
MISRA C:2012
Part 2:

Implementing
MISRA-C:2012

June 2014
 by

Eur Ing Chris Hills BSc (Hons),
C. Eng., MIET, MBCS, FRGS, FRSA

The Art in Embedded Systems
comes through Engineering discipline.

MISRA C:2012
Workshop 2

MISRA C:2012
Workshop 2

2library.phaedsys.com

At the Device Developer Conference 2013 I presented
MISRA-C:2012, Why it won’t save your project illustrating
why, for so many projects, MISRA-C does not help but
hinders - usually because it is badly implemented. It is
worth reading this paper first; it can be downloaded
from http://library. phaedsys. com or from librarian@
phaedsys. com. For the Device Developers Conference
2014 this paper was prepared as “part 2”, following on
and giving more detail on how to correctly implement
MISRA-C in general and MISRA-C:2012 in particular.

MISRA C:2012
Workshop 2

3 library.phaedsys.com

This disclaimer is in MISRA-C:2004 and, less
prominently, in MISRA-C:2012. However it should be
printed as a poster on the office wall of the development
team. Without care, thought, discipline and careful
implementation, nothing is automatic and easy. Even
the easy and automatic things need to be thought about
and understood before being carefully implemented and
properly used.

For all but a trivial program is virtually impossible
to prove it is a “zero defect” system. Most embedded
systems are far from trivial, so the best you can do is
demonstrate that you have minimized the chance of
a defect. No one thing can do this and certainly not
MISRA-C on its own.

There are no easy answers other than doing it properly.
With engineering discipline and a good process things
do get easier as effort is applied appropriately and less
effort is wasted. As it says on the front of every Phaedrus
Systems technical document: The Art in Embedded
Systems comes through Engineering discipline.

MISRA C:2012
Workshop 2

4library.phaedsys.com

MISRA-C:2012 is NOT a silver bullet. It is not a magic
answer. Nor were MISRA-C:1998 and MISRA-C:2004.
The fact that there have been three versions and the
MISRA-C team is looking at a possible MISRA-C:202X
shows that this continues to be an evolving work. This
is partly due to the ISO C standard changing along
with the C cross-compilers developing to track it, partly
due to a Japanese team translating MISRA-C:2102 into
a completely different language system and partly due
to static code analysis companies striving for precise
definitions. And then there are thousands of users stress-
testing MISRA in many vastly different applications,
running on systems from 8- to 128-bit.

In fact there are no magic answers unless you live
in fairyland or bring your fantasy role-playing games
to work. And no, your current project is not a fantasy-
role playing game – despite the similarity in places to a
Dilbert cartoon!

There are far too many who see various tools or

methods as The Answer. With all tools and methods it is
how the tools, methods and processes are used and how
they are used in relation to other tools and the process
in general that is important. (For more see Brooks, The
Mythical Man Month - on the next page.)

There is no one thing that will guarantee error-free,
robust code or indeed a robust or error-free system.
Embedded software is part of a system that does
something physical in the real world. As with most things
you have to look at the overall system, which should be
greater than the sum of its parts. Requirements, process,
tools, integration of tools, specifications, formal design
and code reviews etc will all contribute to minimising
the occurrence of bugs. And they should make the
discovery and rectification of those bugs that do occur
much easier and faster. The next few pages look at the
elements of a robust development process, that you need
in place if you are to get any benefit from implementing
MISRA-C

MISRA C:2012
Workshop 2

5 library.phaedsys.com

The Mythical Man Month is a seminal book on project
management. It says that if it takes one man nine months
to do something - it does NOT mean that nine men can
do it in one month: adding people to a project can even
extend the time it takes. As more people are added you
need to communicate with them and bring them up to
speed. Most importantly you need to ensure that they
mean the same things you do when they say something:
new people need to learn the local “project language”.

Life is more complex than simply dividing people into
months but surprisingly it is not that much more complex.
In other engineering disciplines most of the rules for team
work and project management have been well understood
for decades - if not longer. Sadly software engineering
degree courses rarely teach project management and
finance, and programming is normally taught within
computer science, not as an engineering discipline.

Usually it is when a project is running late that more
manpower is added. This is far too late: the damage has
been done and the additional people are merely fire
fighting. At the same time people within the project
are trying to ensure that they are not taking the blame,
sometimes by trying to make sure that their error(s) look

smaller than other people’s. Everyone tries to cut corners
look after their area and to hell with the rest of them.
Adding more people just makes the situation worse.

The answer is to put resources in early so you don’t
have a fire. To do this means that you need to get the
requirements right. Then you will know, accurately,
what it is you are building and you will be in a far
better position to estimate the resources required for the
project.

Mythical Man Month ISBN-13: 978-0201835953
Brooks’ web site: http://www. cs. unc. edu/~brooks/
http://en. wikipedia. org/wiki/The_Mythical_Man-
Month
http://javatroopers. com/Mythical_Man_Month.
html
Chapter 2 http://www. cs. virginia. edu/~evans/
greatworks/mythical. pdf
1 hour presentation on MMM and project management
in the software domain: http://www. frequency. com/
video/frederick-brooks-mythical-man-month/
109797838/-/5-9872894

MISRA C:2012
Workshop 2

6library.phaedsys.com

The classic V process development model for software
and systems works - if used correctly. (That caveat also
applies to all processes.) There are many safety-critical
systems running today that are saving lives or stopping
lives being lost that were developed using the V model.
There are many more non-critical systems that just
quietly get on with their work that were also developed
using the V model.

There are other, equally valid, process models* and
the following notes should be applicable to them as well,
it is just easier to explain the problems using a V model.

The V model is conceptual and shows information
flow through a project. The User Requirements at top left
- the start - also provide the Acceptance Tests at the top
right - the end. Both of these should be completed before
a single line of code is written.

The problem areas in this model (or any model) lie
in the interfaces. In this model the gap between Tender
Management and the Requirements, the input to the V,
is the stage that should convert a fluffy wish list into
requirements. Sadly, it more often just passes the fluffy
wish list to the designers. They, in turn, produce a design
that is either a bit fluffy or uses guesses to fill in the
blanks and inconsistencies.

The next interface, the gap between the pink and
blue boxes, is the most crucial. The output from the
pink requirements phase is usually a paper exercise,
involving only the cost of a few expense account lunches

or buffets for meetings when talking to the customers.
Maybe there are even some visits to the customer.

When you enter the blue section of design and
construction you now start to use real time, real effort
and in many cases incur real, non-recoverable costs:
mistakes can now be measured in money. As well as
software, embedded systems also involve a hardware
team actually making physical things that cost money.
It is far cheaper to double the time in the requirements
phase than create an illusion of progress by writing code
and making hardware without complete requirements.
I have seen 6 months work and a pre-production run of
PCBs scrapped due to leaving some decisions to “later”.

There is the so called “Spin cycle” in the requirements
and specification phase, where proof of concept and
other ideas can be run round. Here prototypes are made,
algorithms tested, techniques tried out and theories
proved. This can be thought of as the Research in R&D.
However NONE of this hardware or software should be
used in the main development process, other than third-
party and other libraries that have already been fully
tested and validated. Research is not Development but
should inform it.

*Note: While there may be areas where the Agile
approach is valid, the development of complex,
particularly safety-critical and high integrity systems, is
not one of them.

MISRA C:2012
Workshop 2

7 library.phaedsys.com

Programming Research has developed this table of
Return on Investment (RoI) per 100 (USD/GBP/Yen/
Euro) invested in a project. The red numbers highlight
the best return over time, and the blue numbers are the
second best return. This chart shows that formal design
inspections produce the best RoI, followed by formal
code inspections. These two score the highest and
second highest ROI in all categories, more than all the
rest put together. BUT formal code inspections have to
assume that the design is right!

Design inspections pay off faster because if you
get the design wrong you are wasting time and effort
(money) on building the wrong thing in the next stages,
with the strong possibility that you may have to scrap
both hardware and software. With code inspections the
return is higher the further you get from coding: the costs
of fixing a coding bug escalate dramatically through the
product life-cycle. A bug that would cost 1 (USD/GBP/
YEN etc) to fix if found through static code analysis
during the coding phase could cost 50,000 (USD/GBP/

YEN etc) -or even more - if it escaped into the field.
I have a real world case where that happened. The

company in question had turned down an “expensive”
static code analysis tool solution costing 20K during the
development phase of a multi million GBP project. When
the system had been deployed somewhere on the far side
of the world, a serious software bug appeared due to
some unusual, but legal, use of the system. The company
had to fly out an engineer for two weeks to track down
the problem. The cost was over 50K before the loss of
reputation and possible future sales. The company asked
for another demo of the static code analysis tool to see if it
would have found the bug. The tool found the “50K bug”
in about 15 minutes. The tool also uncovered another
5 problems of similar magnitude that were in the code
out in the field waiting for the dice to fall, when they
would have caused a real problem affecting machinery
and people. The tool found several hundred other minor
problems.

MISRA C:2012
Workshop 2

8library.phaedsys.com

That a well defined and robust process saves money is
not just theory - it is reality. A lot of it is based on the real
world findings of Capers Jones who has been involved
in a lot of litigation over software as an expert witness.
This, coupled with his research, has contributed to his
book, The Economics of Software Quality. Here he has the
figures and case histories to confirm that it actually costs
less to produce high quality code rather than try and do it
on the cheap by cutting corners or making savings.

The table shows three analyses for schedules and
costs: high quality, average, and poor quality. All three
are 1000 function points in size. Costs are based on
$10,000 per month.

The high quality case used static code analysis,
inspections, and formal testing.

The average quality case used static code analysis
and quasi formal testing.

The poor quality case used only informal testing.

See this Short Video by Capers Jones: http://www.
youtube. com/watch?v=zmrqsQxv_yo
Also worth listening to is a Podcast: Economics of
Software Quality - An Interview with Capers Jones. the
Interviewer, Rex Black, is also a well known safety
systems expert in his own right)
Part 1: http://www. youtube. com/
watch?v=zo8JI9MVxQg
Part 2: http://www. youtube. com/
watch?v=FLDgRtzq-Cc
http://sqgne. org/presentations/2011-12/Jones-
Sep-2011. pdf

MISRA C:2012
Workshop 2

9 library.phaedsys.com

Verification and Validation: that well known double
act. Everyone goes on about validation, testing etc., static
code analysis, dynamic analysis, unit test etc., and how
they can save a lot of time and effort. In fact they are all
essential but cannot be used just on their own.

Let’s take a quick look. First note that there is
a difference between correct code and code that
implements the correct functionality. Static code analysis
on its own can remove many problems and misuses
of the language, BUT it can not prove that the code is
functionally correct - that it is doing what the designer
wants. Unit test can prove the low level design but it
will not find many/any bugs in the code and again nor
whether it satisfies the overall system requirements. So
you need both static and dynamic analysis in that order.

No matter how good or validated the test tools are,
unless you have a solid requirements specification and
a reviewed design that relates to the requirements, you
don’t really know what you are validating. The code may
be correct in itself and “work” but it may not be doing
what the end user wants.

Verification: Are the requirements correct?
Validation: Static - is the code correct?
Validation: Dynamic - does the unit/system function

to the requirements?

MISRA C:2012
Workshop 2

10library.phaedsys.com

Looking at the lower half of the V model in more detail.
The design specifications should have produced the

unit test cases which go to the unit test phase. This means
that you should have the test cases - unit, integration and
system - before you write the source code.

The next step is to write code to implement the
design specifications and following the coding standard
(which, since we are talking about MISRA-C, is based
on the MISRA-C guidelines). Then run the static code
analysis and the MISRA-C checker. There is no point in
running MISRA-C checking unless you also run static
code analysis. As MISRA-C is a subset of the C language,
checking for these rules is only a small part of static code
analysis which typically finds 100’s of problems. Today
most static code analysers (if not all of them) also provide
MISRA-C checking. Correcting the errors discovered and
rechecking will eventually give you clean code.

Now compile the code with the compiler set to its
highest level of warning. While a properly configured
static code analyser should have picked up all the problems
it is better to be safe than sorry.

Even though there should not be any problems by this
stage, you must resolve ALL compiler errors and warnings.

As I was writing these notes there was a discussion
on the MISRA-C & C++ forum on LinkedIn as to whether
code should be compiled before or after static code analysis.
Opinion was divided: those who know how compilers and
static code analysers work pointed out that the static code
analyser is an analyser while the compiler is a translator.
Whilst many compilers and static code analysers share the
same parser (see the customer list at http://www. edg. com/
) - this is only the front end parser. After that compilers and
static code analysers differ in what they do and how they
do it. A static code analyser will pick up incorrect syntax
as easily as the compiler but it does a lot more besides. So
before fixing the code you want the full picture.

It helps if the static code analysis tool is integrated into
the programmer’s IDE, then it can be called as frequently
and as easily as the compiler. Also it should be configured
to analyse either the current file or a group of files.

NOTE: If you unit test before static code analysis you
will prove nothing. When you statically test, the changes
you make in the code after you have found the bugs will
render all the unit tests invalid. So it is a complete waste
of time.

MISRA C:2012
Workshop 2

11 library.phaedsys.com

In order to implement MISRA-C you will need a
company coding standard. It should contain both a style
guide (for layout) and local coding standards, as well as
the MISRA-C rules. This coding standard will include
things like:

The file and function information blocks.
Naming conventions.
Where the {} are placed.
How many spaces in a tab (Tabs should be converted
to spaces and most editors will do this automatically).
Ideally there should be one coding standard

per language across the company. (Desktop & PC
applications will need a different coding standard to that
used for embedded systems – but today C is rarely used
on desktop applications.)

If you don’t have a style guide there are many on the
internet. To be honest, it does not matter which one you
pick as a basis just as long as there is consistency across
the whole project, if not the whole company.

Note: this standard is for your own code. Third
party libraries that are bought in will have their own
coding standard. However code supplied by people and
companies working for your company should adhere to

your coding standard. I once came across a case where a
contractor had his own style and refused to budge. The
answer should be, “Use a different contractor.” In reality,
for many contractors, if it is a case of “Conform or not get
paid” they usually conform.

The other point that is assumed is that you have a
static code analyser that enforces MISRA-C. The original
MISRA-C was strongly based on the work of a static
code tool company. That company, along with another,
has been part of the MISRA-C working group since the
start. For this reason the MISRA-C guides have stopped
short of requiring static code analysis, lest anyone claim
that there is a commercial motive. However, for the
C language, all the studies over the last 38 years have
shown that static code analysis is very cost effective and
is the most effective tool at removing non-functional
problems. It is certainly the fastest way of uncovering
and highlighting problems.

MISRA-C is a language subset that is well suited to
being enforced as part of static code analysis: anyone
trying to enforce MISRA-C without a static code analyser
is really missing the majority of the benefits of using
MISRA-C.

MISRA C:2012
Workshop 2

12library.phaedsys.com

When the first static code analyser for C (lint)* was
made it was to detect legal but suspicious constructs. A
LOT of LEGAL C is DANGEROUS according to Denis
Ritchie, writing in 1993 about the first lint program that
was constructed in 1976. So, even before the first language
reference for C (K&R) in 1978, and over a decade before
ISO C, there were problems with C being misused. Even
then the compiler told you very little about the quality
of the code.

Also programmers like to try and prove how clever
they are with C. Brian Kernighan said, “Debugging
is twice as hard as writing the code in the first place.
Therefore, if you write the code as cleverly as possible,
you are, by definition, not smart enough to debug it.”
This comment by Kernighan suggests that your cleverest
and smartest programmers should be carrying out test
and debug: that is an interesting proposal to put to a
development team!

Using a lint program, or what we would now call
static code analysis, was intended to be part of the
standard C compiler chain from the beginning and it
certainly was on UNIX. But for some reason it never
survived the leap to the PC development platforms.
Many of us, with a UNIX background, did use lint in
the 80’s but most developers never started the habit and
it seems universities never pushed it. The culture of “it

compiles - it must be OK” started to prevail.
The original lint static code analysers have developed

into, at the high end, very powerful code analysers that
can enforce local coding standards as well as rigorously
analyse code with configurations for many dialects of C.
Even at the entry level the static code analysers are more
advanced than the compilers for code analysis. Which is
not the same as code translation the primary, but not the
only, purpose of a compiler. (In the embedded world most
compilers have extensions for the hardware architecture,
specific IO and registers.) Check the pedigree of any
static code analyser you intend to use. Some of the free
tools such as splint have not been maintained in years
or have support for cross-compilers and have not really
been fully tested.

Many studies show static code analysis works and
SAVES TIME AND MONEY. Most static code analysis
tools pay for themselves the first time they are run by
finding simple bugs that, if they escaped into the wild,
could cost several times the cost of the static code
analysers. (And that is true not just for safety-related
projects.)

*The father of static code analysis: http://en.
wikipedia. org/wiki/Stephen_C. _Johnson

MISRA C:2012
Workshop 2

13 library.phaedsys.com

It is important to realise that MISRA-C does not
find bugs as such. In C there are legal constructs
that are commonly misunderstood and misused by
programmers, producing code that, while appearing to
function, does not do what the programmer expects it
to do. The code may appear to work in a narrow range
of cases but often, when combined with other, similar,
constructs causes problem symptoms somewhere else.
These symptoms may appear to be un-related in the
code (and in time).

There are many studies that show 30-40% of project
time is spent on avoidable rework and bug hunting. The
point of MISRA-C is to restrict the use of these constructs
so that the code will do exactly what is expected, in the
way expected, with no unwanted side effects.

The C language has virtually doubled in size
on each iteration (K&R 1, C90, C99, C11) so there are
very few, not even the language lawyers, who have
a solid understanding of the whole language. Also
the “undefined and implementation defined” aspects
that are described in Annex G of ISO 9899 (C99), have
grown in a similar fashion, giving compilers, and cross
compilers in particular, a lot of latitude.

MISRA-C seeks to clarify and minimise these
variables, especially as the vast majority of programmers
have never seen, let alone read, the ISO C standard.
NOTE K&R 2 is 25 years and several generations out
of date. It is a nice historical book but not a modern C
language reference.

MISRA C:2012
Workshop 2

14library.phaedsys.com

before MISRA-C we had done a loose version of this
in our process. We noted that the compiler had a limit,
requiring variables to be distinct in the first 32 characters.
We neglected to note that the limit on the linker was
31 characters. This made a difference on one pair of
variables A and B. This did not appear until late in the
testing, when the symptoms had us chasing a hardware
fault.

So you really do need to check the specification of the
compiler changes in some detail. A day spent doing this
will save many days of chasing your tail later.

Finally SET THE COMPILER WARNING LEVEL TO
MAXIMUM and investigate/remove ALL Warnings in
compiled code. No matter how theoretically correct the
code is to ISO C and MISRA-C, it is the compiler that
is producing the binary. If there is a warning it must be
investigated. I am sure this point does not even need
mentioning for compiler errors.

Since a compiler does not do the same job as the static
code analyser, we need to look at that next.

*See the paper “Requirements are Required” in the
library (http://library. phaedsys. com)

So how do we implement MISRA-C? First read
the paper “MISRA-C: Why it won’t save your project”
and make sure you have a good process, solid project
requirements,* a good design process incorporating a
formal design review that validates the requirements.
Without this in place there is no real point in continuing.

Now look at your tools: starting with the compiler
You need to know which version of C the compiler

thinks it is implementing. “ANSI-C” is not an answer,
come to that neither is “ISO C”. You need to know
precisely which version of ISO C and, as importantly,
where your compiler differs from ISO C. Fortunately this
should be in the compiler manuals, so READ THEM. You
will need to quantify what the compiler does with the
“implementation defined” things and for cross compilers
the extensions of the language for the target architecture.
This will all need to be documented in the MISRA
deviation document as you WILL be deviating MISRA
Rule 1. 2. You cannot implement MISRA-C:2012 without
deviating at least this rule. There is more on deviation
later.

As a salutary note, some years ago on a project

MISRA C:2012
Workshop 2

15 library.phaedsys.com

static code analyser for the compiler.
Once you have a static code analyser that is

configured for the compiler you need to ensure that
it will test for the same version of MISRA-C that you
will be using in the code. It is no use writing code to
MISRA-C:2012 if the analyser is checking against
MISRA-C:2004.

(When you want to look at moving code from an
older MISRA-C to MISRA-C:2012 there is a case to be
made for running the code through a checker running
to MISRA-C:2012, however.)

Just as you had to look at the compiler extensions
and implementation defined things, you need to look at
which MISRA-C rules the static code analyser enforces:
not all of MISRA-C is enforceable with static code
analysis. Also some rules are only enforceable across
the whole project, whereas others are enforceable at file
level.

Having determined what the compiler is doing you
need to look at the static code analyser. NOTE: there is
no point in implementing MISRA-C unless MISRA-C
conformance testing is part of the static code analysis
phase.

Firstly you need to know the version of ISO C your
compiler is working to and ensure that your static code
analyser supports the same one.

Secondly, and this is almost more important, can
the static code analyser handle the language extensions
and non-standard keywords the compiler uses? Some
static code analyser tools such as PC-lint have many
(over 80) standard configuration files in the tool. Others,
like Programming Research’s QA•C, take a different
approach and have a compiler personality generator tool
that will generate a configuration file for your compiler.
Without doing this your static code analyser will throw
up hundreds of false positives. It is impossible to stress
too highly the importance of correctly configuring the

MISRA C:2012
Workshop 2

16library.phaedsys.com

Having configured the compiler and the static code
analyser to the same version of ISO C, and, for the static
code analyser, the correct version of MISRA-C the next
step is to produce a compliance matrix.

The compliance matrix has been a part of MISRA-C
since 1998, and, just like static code analysis has been
a part of C since 1976, it has also largely been ignored.
However, it is a corner stone of implementing MISRA-C
as it shows what is checked where. More importantly it
shows what is not checked automatically by a tool. You
will need one compliance matrix per project, as you will
need to show that you have covered ALL the MISRA-C
rules in one way or another.

MISRA C:2012
Workshop 2

17 library.phaedsys.com

Other than the colours changing in MISRA-C:2012 the
diagram has not changed since MISRA-C1 in June 1998!
(Although the illustration shown here is a modification
on the one in the MISRA-C publication.) The table lists
ALL the rules and directives, indicating at what stage
they are checked. Some rules may be checked at more
than one stage and so appear in more than one column:
for example, there may be an overlap between the
compiler and the static code analyser. However the main
MISRA-C checker should be the static code analyser.
The table also has a column for a manual review. Static
code analysis and MISRA-C do not negate the need for
a formal code review, and indeed some of the directives
require that one be done.

The column for project deviation is an addition
to the MISRA table. This should be used to list all the
rules that will be deviated at project level and then there
will be a complete column of check marks in the final,
Rule Checked, column. This is because you may be

deviating some rules that are not automatically checked
by the compiler or the checker. Without this column it is
difficult to establish compliance, or rather a positive non-
compliance, for that rule in a manual check.

We said earlier (page 6) that a formal code review
is on a par with a formal design review, for giving the
best Return on Investment (ROI) in a software project.
However, assuming you have also used a uniform style
across the whole project, as well as carrying out static
code analysis and MISRA-C checking prior to the code
review, it can concentrate on adherence to the design, the
correct use of the algorithms and things like that. You
won’t get bogged down in the detail of the syntax or
have to do mental mind-flips to try and read code that is
laid out in a different way to the last file.

A compliance matrix is easy to build in a spread
sheet, word processor or even formal requirements
management software. It does not matter how you build
your compliance matrix BUT YOU NEED ONE.

MISRA C:2012
Workshop 2

18library.phaedsys.com

Now we come to the difficult part: the Deviation
Document. You WILL need to deviate some of the
MISRA rules: that is, you will need to decide to or not to
use a rule. Trust me - not deviating will cause far more
pain and will land you in a lot more trouble in the short,
medium and long term than careful and thoughtful
deviation. Having accepted that fact, the questions are
what rules to deviate, when and why? All the rules in the
MISRA-C guide are there to stop some form of misuse or
another. Some rules seem to contradict others. Choosing
which is relevant depends what you are trying to do
and why. All the deviations should be recorded, so a
deviation document is essential and it needs to be done
very carefully.

MISRA C:2012
Workshop 2

19 library.phaedsys.com

MISRA-C:2012 is NOT just a tick box. You have to read,
understand and apply “sensibly”. It is not a religion to be
followed blindly: it is engineering guidance but you have
to be able to justify your decisions. The good news with
MISRA-C:2012 is that the rules are explained in more
detail than in previous versions. What the team call the
headline rules are shorter, but they are not stand alone:
you have to read the rest of the rule. The next section,
the Amplification, follows on from the headline rule to
explain what the rule does. Then the Rationale explains
why the rule is there and what the drafting team was
thinking. You have to read all the sections carefully,

Some things are “banned” because usually they
are known to cause a problem. One example is unions.
However unions are required in a few special cases
such as packing and unpacking message structures in
communication streams. Other things, such as GOTO,
are things that are often misused.

GOTO is not bad in itself but the sort of programmer
who uses a GOTO as a first option generally has spaghetti
code with very poor structure*. The alternative to GOTO,
sadly often seen where deviations are not permitted, can
be horribly complex and often faulty using nested if else,
switch and loop constructs that are very inefficient, not
at all elegant and are difficult to fully test and debug.
You want a clean, elegant solution that is easily readable,
testable and maintainable. When GOTO is the best
solution then you can deviate Rules 15.1-15.4 and use it.
But remember, you will have to take responsibility for
the deviation.

Thus deviations will be required. But before deciding
to deviate a MISRA-C rule, make sure that you have
read all of the text for that rule, as in MISRA-C:2012
there are some permitted exceptions for some rules. So
if you deviate an exception it is going to scream that you
haven’t read the rules.

MISRA C:2012
Workshop 2

20library.phaedsys.com

10 of them.)
Do make it clear which MISRA-C you working to. Is it

98, 04 or 12? Of course, with legacy code and third party
libraries, you may be claiming compliance to more than
one MISRA-C on a project.

Remember you may have to produce both the
compliance document and the deviation documents
to substantiate your claims. So your decisions for the
deviations had better be sound.

Of course you will need complete traceability between
the requirements and the source code. Either that or have
written a fascinating deviation as to why there is not!

There are now notes in MISRA-C:2012 on how to
claim MISRA-C Compliance for a project: not for a
company, only for an individual project. You MUST
have a completed compliance matrix and deviation
document. They must match each other and match the
configuration of the MISRA-C checking tools, including
a static code analyser. Theoretically you could claim
MISRA-C compliance without a static code analyser, but
it would take so much time and manpower that is it not
a commercial option.

You must of course adhere to the Mandatory rules if
you are working to MISRA-C:2012. (Currently there are

MISRA C:2012
Workshop 2

21 library.phaedsys.com

I can’t stress this enough: you must READ MISRA-C
and that means all of it. I have used a slide asking what the
Kama Sutra had in common with MISRA-C. The answer
is that the Kama Sutra has seven parts but the only one
part anyone, outside academia, has ever heard of, is the
one about sex. Similarly with the previous versions of
MISRA-C there were seven sections but most people only
read the section containing the rules. Now, more than ever,
you have to read the whole of the MISRA-C document.
The headline rules no longer work on their own. As a bare
minimum, you have to read the amplification and the
exceptions. It is also valuable to read the rationale, which
helps to explain the rule. However, to understand how to
use the rules, create a compliance matrix and deviation
document there are other chapters to read. You are going
to have to read 80% of it so you may as well read the rest
and actually understand the whole document properly.

Go on a MISRA-C course? Over the last 30 years I have
come to realise that very few people fully understand C
and would bet that none of them are in your company. This
conclusion comes from having spent over 15 years on the
BSI/ISO C working group (with 4 years as convenor) and
over a decade on the MISRA-C team. Not to mention some
15 years doing tech support for compilers. The C language
has expanded from the small “K&R” book in the 1970s
through three major iterations of an ISO standard, which
most programmers have never seen let alone read. Also
there are the “undefined and implementation defined”
elements in Annex G: unless your programmers know

that by heart and how it is implemented in your specific
tools, they don’t know C.

Phaedrus Systems recommends one particular
training company that specialises in training for
embedded/real time programmers. Their entry level
summary training for MISRA-C takes 8 hours. The full
course is 4 days. It is well worth sending at least one
of the team on a course like that. It will help explain
MISRA-C and using it safely with C. More to the point,
it helps highlight many of the dangerous parts of C that
don’t behave in the way most programmers expect.
Armed with a course like that you will find it far easier
to implement MISRA-C and the team will be turning
out far more robust and reliable code that actually does
what you think it is going to do. It also gives you an
independent external sanity check on your thinking.

Note: Members of MISRA-C team cannot give any
advice on which rules to implement or ignore. More to
the point, most of the MISRA-C working group are fully
employed by companies and can’t do freelance external
consultancy. Of the two that are not, one has retired
outside the UK, so you are going to have to work it out
for yourselves. You can ask for an official answer on the
MISRA-C forum (http://www. misra. org. uk/forum/).
Be warned that answers usually take a couple of weeks
rather than days. An alternative is to join the MISRA-C
& C++ forum on LinkedIn which, while unofficial, has a
large number of the MISRA-C team on it.

MISRA C:2012
Workshop 2

22library.phaedsys.com

If you do not need formal MISRA-C compliance
and you are not going to say, even informally, you
are MISRA-C compliant then you could deviate the
mandatory rules, but you will still need a deviation for
them to justify it.

Required rules require individual deviations.
MISRA-C:2012 does say that Advisory rules can be
deviated without a formal deviation. However it is
recommended that you deviate Advisory rules in the
same way as you would for Required rules. Then should
anyone ever audit your code it will not be held against
you. Simply not bothering with deviations for Advisory
rules may be permitted technically but the auditors,
lawyers, customers, jury etc will look at it and know it is
not really right.

In MISRA-C:2012 there are Mandatory, Required and
Advisory rules.

There are 10 Mandatory rules: that is rules that cannot
be deviated. The MISRA-C Team originally considered
about 30 mandatory rules but these were thinned out as
people kept finding legitimate reasons for deviation. So
there are only 10 out of 159 rules and directives (7%) that
the team, and a large number of reviewers, could find
no legitimate reason to deviate and are true 100% of the
time. This shows clearly that there are not many things
that are universally true for C because of architectures,
extensions and restrictions and also the nature of the
project. As was said earlier, unions are banned but it was
expected that those using communication streams will
deviate that rule.

MISRA C:2012
Workshop 2

23 library.phaedsys.com

it was suggested that during R&D you could be
writing MISRA-C compliant code but not have any
requirements. But R&D has two phases, Research and
then Development. In Research you play around with
ideas, techniques, algorithms etc and here you may not
have a full set of requirements. You will, as a matter
of course, be using the company coding standard and
MISRA-C as even in Research you need the code to do
what you think it should be doing. (Also, over time, the
programmers will naturally tend to write to the company
& MISRA-C standards.)

When you get to the Development phase you should
have full requirements, which will partly have come
from the Research phase. So when you are making
things that will never be released to anyone else you
might deviate Directive 3. 1. Otherwise no one has found
any legitimate reason since we wrote the directive.

The ultimate MISRA-C:2012 rule is Directive 3. 1, “All
code shall be traceable to documented requirements.” As
it is a Required, not Mandatory, rule you can deviate this
directive. But, in order to do so, you have to show why you
do not need documented requirements or be able to trace
them from the code. So you need to come up with a good
reason why you wrote code that you did not have proper
requirements to write. This rule is a game changer as it
puts responsibility on to the people enforcing MISRA-C
in the company. If they don’t deviate MISRA-C then you
need full sets of requirements and code traceability. So
you can’t start writing code unless the requirements are
complete (and someone has signed for them). If someone
has taken responsibility and signed for the deviation of 3.1
then you can start writing code without full requirements
- that should get a few people thinking!

During the Device Developer Conference 2014

MISRA C:2012
Workshop 2

24library.phaedsys.com

deviation.
•	 There should be a “raised by” and “approved by”

each with name as well as a position.
•	 The important part is the position as much as the

signature. In some companies one person may
hold more that one position at some time. In some
companies one person might hold all the positions!
This does not mean you only need one set of boxes.
You should design a process with all the positions
and use the positions, even if sometimes it is the
same person holding more than one position. It
may not always be the case and you don’t want to
redesign the form because of it.

•	 There should be a description of the scope of the
deviation- whole project, specific module, specific
file etc. This is discussed further, below.

•	 You may want to use a code letter to indicate the
scope in the Deviation ID.

•	 For scope there should be for the name of the
function, file or module.

As a lot of people wanted an “approved” deviation
the MISRA team wrote a couple of pages on deviation,
with an example. The example (shown above) is just a
general example. You should modify both the diagram
and the suggested methods to fit your processes. The
person who wrote the guidance in MISRA-C:2012
worked for a large company in a specific industry and it
shows. So use it as an editable template not a rigid form.
It really does not matter what the form is or looks like, it
is the function that is important. Also regard the rest of
the text on deviations as guidance only.

When thinking about the deviation document there
are several things that you should bear in mind.
•	 Each deviation must have a unique reference or

identifier.
•	 You may want to have the identifier also identify the

project which may be a product or a range of products
or a library used in many projects or products.

•	 Each deviation should have a headline explanation
which can be used as a standard reference for the

MISRA C:2012
Workshop 2

25 library.phaedsys.com

Deviations should be for the minimum area possible.
Some will be at project scope and these should go on the
compliance matrix as well as the deviation document.
Other deviations may be for a specific module. For
example the rules on unions might be deviated in
communications drivers for packing/unpacking
messages. Still others may be deviated where you are
interfacing to a third-party maths library. Whilst a
module might be several C files, you could have rules
that only need to be deviated on a single file in a module
when it would be unwise, or simply not needed, to
deviate them in other files.

Continuing this theme, you may want to deviate
only in a single function in a file, where, for example,
a function is doing something specialist that requires a

deviation but for the rest of the functions in that file
the deviation could be dangerous. Given that some
functions can be quite large it follows that you may
also want to deviate only for a block in a function.

There is a good reason for being this pedantic.
The vast majority of static code analysis tools can
use comments in the code to turn rules on and off.
For example with PC-lint /*lint –e(413)*/ will
turn off message 413 for the expression following.
–efunc will suspend a rule(s) for a function. There
should also be an additional comment with these in
line suppressions giving the deviation reference and
a brief “one line” explanation. This should be the
official one line explanation that the previous page
said should form part of the deviation.

MISRA C:2012
Workshop 2

26library.phaedsys.com

There is an open discussion as to where the deviations
should be placed. Should all the deviations be grouped at
the top of the file in one place? For example:

// File deviations
…. followed by
//Function-name deviations
…
//Function name deviations
Or should the deviations for each function be in the

information block for that function?
In all cases you need the deviation ID reference and

the one line “headline” reason for the deviation. Anyone
reading the code will not only see the reference to the
full deviation but from the headline understand why it
is there.

The static code analyser and MISRA checker should
be configured to handle your deviations automatically.
You don’t want thousands of analysis messages for rules
you are deviating. However you want to suppress the
messages only in the places where you actually intended
to deviate. It is no use suppressing the messages where
you did not want to deviate.

To achieve this you will probably need to instrument
the code with the specific style of comments the static
code analysis tool requires e.g.:

/*lint rule suppression */
Your file and function information blocks could

include these specialised comments with the deviations
for the file and the functions. The positioning of these
comments may vary from tool to tool.

MISRA C:2012
Workshop 2

27 library.phaedsys.com

at the code and documentation, it is because something
has gone wrong. Humour is usually in very short supply.
What is a clever technical funny line can come across as
unprofessional. Expert witnesses & auditors who as people
may be signed up members of the Monty Python Fan Club
have to be professional and un-funny in their work.

Finally whilst you are not expecting it, you should
think, “Will my deviations make sense to a non-technical
lawyer working in my defence?” The sub-sub contractors
working for the OEM that supplied Toyota in 2001-2004
were not expecting to have their code scrutinised in a
major legal battle over a decade later. The deviation must
not be a hook the prosecution lawyers can use. Can the
deviation be understood by a jury made up of Joe the
Plumber, Aunt Flossie, your Mum and the lads you drink
with down at the sports bar?

Just as important as deviating is not deviating: if
you don’t deviate but do some “clever code” to “keep
the MISRA-Checker quiet” you are likely to have that
picked up by an auditor, expert witness or lawyer. This
shows “bad practice” and “sloppy procedures” and a
“bad attitude” in the development team. Even if the jury
is told to disregard the comments from the lawyer the
idea will have been planted in their heads.

Whether a deviation will make sense to you in six
months time or to other people at any time, is a hot
topic at the moment (2014). This is because several high
profile court cases involved software that deviated from
MISRA-C. The problem is often that deviations are done
to solve an immediate problem. Most deviations will
be raised during development, not before. Only some
things (e.g. compiler extensions) can be deviated while
you are setting up the tool environment.

YOU have to justify the deviation. Someone will have
to sign for it and take responsibility. The words “cool”,
“neat”, “radical” do not appear in ISO Standards or in
most court cases other than from the defendants. It is
no use making up a deviation that, like the code, makes
sense now but you will not be sure about later. Will it
make sense to you and the team in 6 months time when
you are doing a review?

Would it make sense to the management in a review
following a customer having a problem and the bug is in
that area of code? A lot of management is not technical,
so is the Deviation in plain English that makes sense to
someone other than a fellow programmer? It does make
sense to ensure the deviation is clear.

In many cases where an expert witness has looked

MISRA C:2012
Workshop 2

28library.phaedsys.com

rules. MISRA-C can be counter productive when some
manager demands 100% compliance without realising he
is dangerously handicapping the project. The team fights
with the standard resort to all sorts of time consuming
and, in some cases, dangerous tricks to get round the
warnings from the code analyser. The team is spending
a lot of time getting hideous and less efficient code.

A4 size copies of this slide are available, signed, for
your manager’s office wall!

Deviations WILL be required. Just as the rain must
fall but too much is a flood.

Deviations are something the MISRA-C team has
been regularly and frequently asked about. Questions
fall into two groups. One is, “How do I deviate?” which
I will cover next. The others come from those who are
told, “100% MISRA-C with no deviations” [TICK]. This
mandate usually (actually always) from people who don’t
understand what MISRA-C is or how to implement it.

As mentioned there are only 7% of the MISRA-C
rules that are Mandatory. That is rules that are
applicable 100% of the time. Therefore we hope that 99.
9999% of MISRA-C users will deviate the appropriate

MISRA C:2012
Workshop 2

29 library.phaedsys.com

The MISRA-C team has produced an Approved
Deviation Compliance for MISRA-C:2004 However this
is effectively only 1 ½ pages of text when you remove
the title and admin pages. It was largely put out for
non-technical reasons to help one particular industry
in a particular country. It contains less advice than this
presentation!

As of the Summer of 2014 the MISRA-C team is
working on a new Approved Deviation system. Bearing
in mind progress on MISRA-C documents over the last
15 years I do not expect to see the new MISRA Approved
Deviation Compliance before 2016.

MISRA C:2012
Workshop 2

30library.phaedsys.com

because of other “loose” code and making a function
or file correct with static code analysis and MISRA-C
may cause latent bugs and problems in other areas to
appear. This is why it is sometimes said that static code
analysis causes more problems than it solves. In reality
it doesn’t: it removes some problems and makes others
more obvious.

The best and safest answer is to update and re-
write modules. Now I don’t propose to get into a long
discussion on what a module is - you can go to the internet
forums for that. In this context a module is a functional,
self contained group. It may be a file or collection of files.
The interfaces to a module should be well understood.
Therefore the code contained within should be updatable
without affecting code elsewhere in other modules. At
this point you should use static code analysis first then
update to MISRA-C compliance a file at a time, on a copy
of the code in parallel to the main development.

This approach does assume that you were writing
modular code in the first place. If you were not then you
have more problems and it may not be possible to easily
and safely update the code to MISRA-C compliant code.

Updating between versions of MISRA-C. As your
code will already have been statically checked and
MISRA-C:1998 or MISRA-C:2004 checked, all you need
to do, after having produced a compliance matrix and
deviation document for the version you are moving to, is
to run the new MISRA-C:2012 checker over the code, file
by file, and adjust the code according to the warnings.

All your new code is sorted. But you still have legacy
code. This falls into several groups.

•	 Old projects that are mothballed bar the
occasional minor bug fix.

•	 Old projects that are updated with new features
every now and again.

•	 Current projects that are in their nth revision
and are not MISRA-C compliant or are possibly
compliant to an older version of MISRA-C.

•	 New projects that contain local library files or
code re-used from older projects.

Deciding what to do and when to do it is a matter
for judgment calls: however someone needs to take
responsibility for the strategy AND have the authority
to implement it. In a perfect world you would stop all
development in the company and update ALL the source
code to MISRA-C:2014. Actually that is not true: In a
perfect world you would be using Modula2 or Oberon
in place of C. However neither Oberon nor stopping the
company to update all the code is going to be feasible.
More practical is to update files as you go along, usually
as they are modified. This is the solution most jump at,
but it is also fraught with danger. MISRA-C restricts
the C language and of course you will be using a static
code analyser, even if you didn’t when the code was first
written. This will tighten up, and possibly modify, the
behaviour of the code to the specified behaviour. But
the system may only be producing the correct output

MISRA C:2012
Workshop 2

31 library.phaedsys.com

“colour” was declared as “red” then “blue” for a while,
then “red” again. This happened more than once. We had
to re write some of the code with “colour1” and “colour2”
and it took some time to work out if a particular use of
“colour” had to be 1 or 2.

We also found that after tightening up the module and
all the interfaces our module suddenly stopped working.
We tracked it back to an input from another module.
However on inspection it turned out the parameter was
passed through that module, without any checking at
all, from yet another module. Had the module passing
to ours done the appropriate checking it should have
flagged an error on receiving the data. We had to red flag
that, so that they started to implement checking. We also
had to issue a fault report to the originating module.

These kinds of problems are not uncommon when
you start to clean up code. However you will then
have far more reliable and robust code with far fewer
surprises. More to the point you will have removed the
problems before the customers find them and they cost
a lot more to sort.

To provide a perspective on cleaning legacy code,
some years ago I was one of a team of six working on
version five of a large UNIX project, alongside eight
other teams of four to eight people. Five of us were new,
so we looked at the code to familiarise ourselves with
it. We noticed many anomalies. Therefore we spent 20
minutes a day running lint over our code. We did this for
six months until we had removed all the lint warnings
for the old code.

We found we had removed a lot of redundant
code, a lot of dead code, unravelled the 10 include
files to discover we had over 120 nested include files.
Many of them were included more than once, without
duplication guards. When we tried to rationalise them,
things stopped working. It appeared that due to the
dependencies some things that were being declared as
one thing in a header file were used in another “include”
file and were then re-declared in another header file that
was included in some more header files before the first
header file was included, changing the item back to the
original declaration. Are you keeping up? For example

MISRA C:2012
Workshop 2

32library.phaedsys.com

full unit testing, you may be able to get away with it for
a while longer. However new projects will have to be
MISRA-C:2012 compliant.

The Ariane 5 rocket crashed because they reused
code modules from Ariane 4. These modules were fully
tested against the Ariane 4 flight plan, but not against the
full Ariane 5 flight plan. So if you reuse code you may
need to fully test against today's standards.

In both this case and that of Toyota, the failure to
spend a couple of tens of thousands cost many billions.
There are many more cases where not re-testing and
bringing code up to current standards has cost far more
than it appeared to save, but these mostly go un-noticed
as, unlike Ariane and Toyota, they are not in the public
domain.

There is a tendency to say: Don’t fix what ain’t broke.
The problem here is that in 5, 10, 15 or even 20 years' time
your code, or code you are now responsible for, might
end up in court. You might say in 10 years' time I won’t
be here. However as the current team shipping code you
are going to be seen as responsible for what you ship,
even the legacy code from 10 years ago that you did not
write. You did test it, didn’t you?

The code will be judged on the standards at the
time the code was shipped: which is good. So in 2024
code shipped today will be judged on today's (2014) best
practices - i.e. full static code analysis, full unit testing
and MISRA-C:2012. Of course, if the project is an on-
going (and properly documented) MISRA-C:2004 project
and you are carrying out full static code analysis and

MISRA C:2012
Workshop 2

33 library.phaedsys.com

own way. These tools may use different but equally valid
techniques, methods and algorithms. Therefore the way
in which they detect errors and the way they flag them
may vary from tool to tool. Usually they are different not
wrong. For example Pale Black == Dark White == Mid
Grey (or Dusk as it is called by the marketing team).

There are vendors of third-party code such as RTOS,
OS, graphics, communications stacks such as USB, CAN,
TCP/IP, Modbus etc and middleware such as databases,
that claim MISRA-C compliance. If you buy this code
you should ask for the deviation documents, showing
which rules have been deviated and why. The vendor’s
compliance matrix will show where they check each rule
and the name of the static code analysis tool they used
for MISRA-C checking.

Depending on what your project is you may take this
at face value and enter it into your project documentation.

Legacy code, of course, includes any company
libraries where you have the source.

NOTE: It is always a good idea to periodically look
at company library code. You want library code that you
are reusing often to be of the highest quality, robust,
reliable but also compact and efficient. You can tune it
and ensure it is well tested and documented to your
requirements. If you are buying-in, or downloading from
the internet, third-party code, this is a different matter. If
you pay for support for third-party libraries you will be
getting maintenance releases and updates.

There is no such thing as MISRA-C certification.
When MISRA-C first started in the mid 1990s it was a
local guide for two UK automotive companies who were
both using the same static code analysis tools. Since then
MISRA-C has gone global and many other tools vendors
asynchronously started to support MISRA-C in their

MISRA C:2012
Workshop 2

34library.phaedsys.com

Then of course you go on to apply pressure for them
to make the rest of the library MISRA-C compliant.
If you only have the object or binary versions of the
library you will not know what the source looks like
but most libraries have a source code version. Projects
for critical systems, which are likely to require MISRA-C
compliance, will normally buy source code versions. In
this case the vendor has more of an incentive to make
their library MISRA-C compliant, as otherwise they will
be excluded from many projects.

You can expect over the next few years that more
libraries and middleware will become MISRA-C compliant.
Until then deviating the library may be the only option.

For non-MISRA-C compliant libraries there are
several options. Obviously you re-write the whole
library as fully MISRA-C compliant. Ok - that is unlikely
to happen unless it is a small, unsupported/obsolete
library which you want to continue using.

Where it is a large and supported library the option is to
deviate the library. If possible write MISRA-C compliant
wrappers for the include files which do the appropriate
range and error checking, const parameters etc. I would
suggest talking to the vendor and applying pressure for
them to produce the MISRA-Compliant include files. Or
do a deal for several years’ free maintenance if your team
does it for them.

MISRA C:2012
Workshop 2

35 library.phaedsys.com

The [ISO] Standard Library that usually comes with
the compiler is specified in ISO 9899. It is not going to
change to be MISRA-C compliant any time soon (read
decades). This is partly because ISO C working groups
don’t like breaking legacy code and partly because if they
do make the change, it will take a very long time to do
and they have many other, higher priority, things to do.

The solution can be, as with legacy code and other
third-party libraries, to write MISRA-C wrappers for the
include files you do use. Bearing in mind of course that
MISRA-C bans the use of much of the standard library
anyway. The answer could be, as suggested previously,
to put pressure on your compiler vendors to provide a
standard library with a set of MISRA-C:2012 compliant
wrappers. As many compilers use the http://www.
dinkumware. com standard libraries as a basis it might
be easier to do than you think.

MISRA C:2012
Workshop 2

36library.phaedsys.com

Check list for implementing MISRA-C:2012
•	 Style guide and coding standard.

•	 This is a must have. Without uniformly
written code you are just wasting your time.
Your style-guide/coding-standard will have
more in it than just the MISRA rules.

•	 Configure the compiler.
•	 Note, understand (and document) where it

has differences from and extensions to ISO C.
•	 Set the compiler warning level to maximum.

•	 Investigate/remove all warnings in compiled
code. No matter how theoretically correct
the code is to ISO C and MISRA-C it is the
compiler that is producing the binary. If there
is a warning it must be investigated. I am sure
this point does not even need mentioning for
compiler errors.

•	 Configure the static code analyser.
•	 It needs to match and support the compiler

and target MCU, including noting and
documenting the support for MISRA-C,
ensuring that the static code analyser
supports both the same ISO C as the compiler

and the same version of MISRA-C that you
are implementing.

•	 Produce the Compliance Matrix.
•	 Having configured the compiler, static code

analyser and MISRA-C checker, you are
now in a position to produce the compliance
matrix, though you may not be able to
complete the project deviation column until
after the next step.

•	 Produce a Deviation Document.
•	 With the tools set up and a Compliance

Matrix complete, you can produce your
deviation document. This will take some
time and require information from the
previous steps as well as an understanding of
the project which will come from the design.
You will probably need several sections in
the deviation document to cover the different
sets of deviations for new code, legacy code
and third-party party code. Where “MISRA-
Compliant” code is used it should come
with its own documentation including a
compliance matrix and deviation guide.

MISRA C:2012
Workshop 2

37 library.phaedsys.com

supporting text has to be read and understood in order to
implement or deviate a rule. This was intentionally done
to keep some rules from ending up a paragraph long. We
wanted things readable.

There is no substitute for having a copy of MISRA-C
if you are intending to work to MISRA-C. Actually it is
impossible to implement MISRA-C:2012 without reading
and understanding the whole document which is why
I recommend at least one of the team attends a good
MISRA-C course to gain an in-depth understanding
of not only MISRA-C but the widely misunderstood
idiosyncrasies of the C language.

I cannot tell you which rules to deviate or why. YOU
have to take responsibility for your own deviations (or
not). Not deviating can be as much of a crime as deviation
depending on the rule and the situation. It is not possible
to have 100% MISRA-C compliance with no deviation.
You have to deviate Rules 1. 1, 1. 2 and 1. 3. If you do
not deviate these three rules (at least) there is something
seriously wrong.

One of the major changes in MISRA-C:2012 compared
to the previous editions is that Headline rules don’t work
on their own. The Headline rules were intentionally kept
short and are augmented by the Amplification, Rationale
and any Exceptions. Therefore the rule and all the

MISRA C:2012
Workshop 2

38library.phaedsys.com

The final notes from Part One from Device Developer
2013 still hold true: MISRA-C might save your project as
part of a properly implemented system. On its own it is
just one more tool in the box. Like any other tool it can do
more harm than good if misused.

If you have any questions there are several places you
can go for help:

For Authoritative and definitive statements from the
MISRA-C working Group got to www. misra-c. com/
forum

For general discussion on MISRA-C and C++ there is
the LinkedIn forum “MISRA-C and C++”. This is where
most of the MISRA-C team hang out.

Otherwise for general MISRA-C information, static
code analysis, general software engineering and project
control information, contact Phaedrus Systems MISRA@
Phaedsys. com

MISRA C:2012
Workshop 2

39 library.phaedsys.com

The Art in Embedded Systems
comes through Engineering discipline.

MISRA C:2012
workshop

MISRA C:2012

Implementing MISRA-C:2012

May 2014

First edition May 2014

© Copyright Chris A Hills 2014

The right of Chris A Hills to be identified as
the author of this work has been asserted by him
in accordance with the Copyright, Designs and
Patents Act 1988

Phaedrus Systems Library
The Phaedrus Systems Library is a collection of useful

technical documents on development. This includes
project management, integrating tools like PC-lint to
IDE’s, the use of debuggers, coding tricks and tips. The
Library also includes the QuEST series.

Copies of this paper (and subsequent versions) with
the associated files, will be available with other members
of the Library, at:

http://library.phaedsys.com

