
Byte Paradigm
White Paper

Revision 1.00 – 19-Jun-08 1/9

Solutions for SPI protocol testing and debugging
in embedded system.
There are many different reasons to use serial protocols in embedded systems. Simplicity, low pin count
and the ability to setup a kind of network of simple devices to implement a complex functionality are
probably the most frequent reasons for using them in embedded systems. Focusing on the Serial
Peripheral Interface (SPI), this paper explores the reasons to test and debug a SPI port. It then describes
and compares the tools available on the market to do so, from general purpose oscilloscopes to
specialised PC-based SPI exercisers and analysers.

Serial buses are everywhere in embedded design.

Among the existing protocols, SPI and I²C have established themselves as de facto standard. They are well
suited for low-cost and (not always so) low-speed communication between ICs, between microprocessors
and between microprocessors and peripherals. EEPROMs, real-time clocks (RTCs), ADCs, DACs, thermal
management devices and LCD controllers are such peripherals. Table 1 briefly compares the 2 protocols.

 SPI I²C
Clock frequency free (n x MHz, 10n x MHz, ...) 10 kHz, 100 kHz, 400 kHz, 1 MHz

and 3.4 MHz
Number of wires 4 2
Duplex Full duplex Half duplex
Multi-master Yes1 Yes
Multi-slave Yes Yes
Built-in slave addressing No Yes
Access length defined No Yes
Flow control No Yes

Table 1 : SPI and I²C compared

SPI and I²C compete well at different levels for the usage mentioned above, but we can say that SPI is
better suited than I²C for ‘data stream’ applications that use its full duplex capability, as opposed to reading
and writing addressed locations in a slave device. As example of a ‘data stream’ application, we can think of
transfers between a microprocessor and a DSP or sending data samples to a DAC.

Strictly speaking, there are many ‘SPI protocols’. Designing a port with a protocol similar to SPI might seem
quite straightforward. After all, it is all ‘just’ about producing a reference clock signal to generate and
sample data onto 2 separate lines for in and out, let them play simultaneously and select the slave with a
third slave select (should we say ‘chip enable’) line...

1 Multi-master is possible but is not defined by the SPI standard and not often done. It may require additional signals.

Byte Paradigm Products are available from:
The Debug Store, Berwyn House, Carrog, CORWEN, LL21 9AT, UK www.TheDebugStore.com

Byte Paradigm
White Paper

Revision 1.00 – 19-Jun-08 2/9

Well, if you think to it, there are so many variations from the protocol first established by Motorola (4
wires, byte-by-byte scheme). To get an idea of the possible combinations, just ask yourself the following
questions:

 Will the protocol use a continuously generated clock or will the clock be active only when data
are sampled and generated?

 In case of a non-continuous clock, what would be the clock line default level?
 Will the protocol allow any data length on the serial lines or be restricted to burst access of, say,

8 bits?
 Which clock edge will be used to sample the incoming data? Rising or falling?
 Same question for data generation: rising or falling clock edge?
 What is the polarity of the slave select lines?

Clock rates, clock phase, clock continuity, sampling and toggling edges, signals polarities: actually, none of
these parameters are really known in advance when using a ‘SPI’ device, or, should we say a ‘SPI-like
protocol device’2.

This may be one of the reasons why SPI is nowadays so ubiquitous: in its principle, it is quite simple and
nothing is really defined by any authority committee. Aside, because it is the peripheral protocol used for
many popular processors from Motorola, then Freescale Semiconductor, such as the MPC8260
(communication processor) and microcontrollers such as the M68HC11 well there is a chance that you’ll
run into it one or other of these beautiful days.

Manufacturer Device Types
Analog Devices DSP, ADC, digital Pot., codec
Atmel CPU, EEPROM, digital Pot.
Cirrus Logic ADC, DAC, codec
EPSON RTC
Fairchild EEPROM
Freescale Semiconductor DSP, MCU
Infineon Pressure Sensor
Intel CAN Controller
Linear Technology ADC, DAC, Temperature Sensor + Voltage Monitor
Macronix FLASH
Maxim ADC, DAC, UART, Analog Switches
Microchip Micro controller, EEPROM, ADC, CAN controller
National Semiconductor LCD Controller, dig. temperature sensor, USB Controller
SanDisk FLASH, MultiMediaCard
Texas Instruments DSP, ADC, DAC
Zilog MCU

Table 2 : Non-exhaustive list of SPI devices manufacturers

2 In comparison, I²C has remained more ‘pure’ over the years.

Byte Paradigm Products are available from:
The Debug Store, Berwyn House, Carrog, CORWEN, LL21 9AT, UK www.TheDebugStore.com

Byte Paradigm
White Paper

Revision 1.00 – 19-Jun-08 3/9

Why would you want to ‘debug’ a standard protocol?

After all, if SPI has been around for all this time, it is very unlikely that its current implementation would
cause any trouble at all... All any engineer would have to do is to connect a network of SPI-compliant
devices and let them play, right?

Actually, there are many cases where you would like to check what is going on at the protocol level. We
pointed out 4 possible cases, summarised in the table below.

SPI Debug / Test Case Description
CASE 1: Don’t debug SPI, debug through SPI A SPI functional port is used as an access port to gain

visibility on an embedded system by analysing the traffic
exchanged between the devices on a SPI network and by
stimulating the embedded system through its SPI
interconnects.

CASE 2: Command or higher level of the
stack built on SPI

The SPI port is analysed and stimulated to test and debug
the protocol stack built on top of the SPI signalling.

CASE 3: Detect which SPI protocol is used The SPI port is debugged to check its parameters and how
it derives from the standard ‘pure’ SPI interface.

CASE 4: Debug and test your own design of
a SPI controller

A SPI port can be part of a custom design on CPLD, FPGA,
ASIC or SoC. Like any design, this requires debug and test,
which can be performed with SPI-oriented test and debug
tools.

Table 3 : Overview of SPI test and debug cases

CASE 1: Don’t debug SPI, debug through SPI

Organising testing and debugging of an embedded system requires choosing several input and output ports
used to access and observe the behaviour of the system.

JTAG scheme

Figure 1: System debug done by collecting trace data from system memories through JTAG port

JTAG port

Device 3

Device 2 Device 1

Trace memory Trace memory

Trace memory

JTAG probe

Byte Paradigm Products are available from:
The Debug Store, Berwyn House, Carrog, CORWEN, LL21 9AT, UK www.TheDebugStore.com

Byte Paradigm
White Paper

Revision 1.00 – 19-Jun-08 4/9

JTAG often comes in mind first, because it is used by emulators for software tracing. In many cases, it can
be used to collect data from embedded memories and other chips like CPLD and FPGAs. However, while
efficient for very specific uses (like single processor software debug) such a debug port offers a very low
speed communication and can only be used like a ‘side door’ to access a whole system and collect
previously stored trace data. Using JTAG to bring stimuli to a system and using the same JTAG port to
collect results from the same system is a viable debug and test scheme as long as memory (for tracing
storage) and speed are not an issue.

SPI scheme: intercept functional SPI traffic by placing an instrument on the bus
Now, let us imagine that your embedded system is composed of a network of devices like processors,
peripherals, programmable devices (CPLD / FPGA) that use SPI protocol to communicate with each other.
Intercepting and interpreting the SPI traffic exchanged on this network will bring valuable and ‘real-time’
information about the system, allowing you to actually observe the system. With a careful trigger
generation and/or data sorting, you can narrow your search of a mighty bug. Moreover, if you can play
arbitrary sequences or replay recorded sequences onto the SPI bus whenever you like, you’ll be able to
stimulate the system very precisely, at a very low level.

Figure 2: System debug through the functional SPI interconnect

Low-level stimulation and analysis is useful for embedded system test and debug

Processor-centric embedded systems offer a great deal of flexibility for test and debug, since (almost)
everything is controlled from the embedded microcontroller and it is very easy to segment and write
software to test any part of the system. It is very commonly thought that the embedded microcontroller is
the one and only access point to the system for stimulation (through its serial ports and GPIO, for instance)
and analysis (through simple register access, for instance).

Device 2 Device 1

System SPI
interconnect

Device 3

SPI Instrument

Functional SPI port
used for debug

Byte Paradigm Products are available from:
The Debug Store, Berwyn House, Carrog, CORWEN, LL21 9AT, UK www.TheDebugStore.com

Byte Paradigm
White Paper

Revision 1.00 – 19-Jun-08 5/9

However, even for such systems, low-level stimulation and analysis can reveal extremely useful. Tracking
embedded systems bugs is of course about debug the software, but it is also all about having good ways to
observe any given peripheral, co-processor or external device. Many debug strategies exist, but at the end,
making sure that a whole system works starts by checking the behaviour of each of its individual parts
independently.

Bringing stimuli directly to the I/O port of a given device allows early testing of device and hence, early
validation of parts of the whole system functionality. This is especially useful during the design process,
when not everything is available yet... In brief, there is a need to emulate non-existing parts of a system to
test the parts that are already available and observe their response to specific stimuli. In other words, if you
have carefully tested each component of a system before assembling them together, you‘ll increase your
productivity if a bug occurs later because you’ll be able to narrow your search for the problem.

Similarly, intercepting and observing traffic at the functional interfaces of the embedded system
components and correlating them with any running software ran by the processor would increase your
productivity. If you observe a system from more than one single access point, you’ll increase the visibility
you get from it. If you get a high visibility of the system, there is a good chance that you’ll speed up the
debug process.

Because SPI is very common as functional interface, and because it can reach quite interesting streaming
speeds, using SPI as an access port to your system can definitely help test (stimulate) and debug it.

CASE 2: Debug command or higher level of the stack built on SPI

Standard SPI only defines the signal level, not how data is organised. Unlike I²C, SPI does not define any
device addressing. It does not define any flow control, not any command3... Well, all you have is a few data
and control lines and you are free to add any protocol layer to this.

This basically means that implementing a SPI system requires designing a protocol stack – simple or
complex, this is up to you... As such, this development must be tested and debugged anyway. This is also a
test and debug case where there is a need to plug yourself onto the SPI bus to analyse and exercise it.

CASE 3: Detect which SPI protocol is used

SPI variants are numerous. When something goes wrong with an interconnect of SPI devices, you must first
check which SPI configuration is used (SPI mode, clock, ...) and even, if the device ‘so-called’ SPI protocol
really complies with what you think.

CASE 4: Debug and test your own design of a SPI controller
What if you designed a SPI master or slave yourself? Whether you need an I/O port for a CPLD, FPGA, ASIC
or SoC, a SPI port has got many advantages:

3 Actually, the original SPI protocol defined serial data grouped by bytes, but there are many devices today
that use other arbitrary – and even variable-length bit grouping.

Byte Paradigm Products are available from:
The Debug Store, Berwyn House, Carrog, CORWEN, LL21 9AT, UK www.TheDebugStore.com

Byte Paradigm
White Paper

Revision 1.00 – 19-Jun-08 6/9

 If performance requirements allow it, a serial interface is better than parallel memory-like
interfaces for general purpose or register access because it spares costly pins.

 It allows arbitrary clock frequencies, up to several 10th of MHz (even more, if you do a careful
routing on the board).

 It is ‘self-contained’ on 4 (or less) wires: clock, slave select and data lines.

Given its relatively low complexity and because any additional protocol layer will likely be custom (since
nothing is defined with the SPI standard), you’ll probably end up designing instead of integrating a ready-
to-use IP. During and after the development of your own SPI interface, it will be necessary to test and
debug it… This is another case where you’ll need the proper tools and environment.

What is available for SPI debug and test?

Now, let’s have a look at the solutions currently available on the market for SPI test and debug. Table 4
provides an overview of the existing techniques and tools.

Device / tool Purpose
Oscilloscope and Logic Analysers
with SPI protocol analysis support

Probing and analysing SPI port at signal level and provide
visualisation and decoding support. Analyse only.

Processor with a SPI interface Provide a ‘software’ access point onto the SPI interconnect.
Stimulate and Analyse.

Arbitrary digital pattern generator Stimulate SPI interconnect at signal level. Stimulate only.
PC-based SPI analyser Probing and analysing SPI port at signal level and provide

visualisation and decoding support. Analyse only.
PC-based SPI exerciser Stimulate SPI interconnect at signal level – act as a master onto

the SPI interconnect. Stimulate only.
Combined PC-based SPI exerciser /
analyser

Combination of the 2 tools above: Stimulate and Analyse.

Table 4: Overview of existing techniques for SPI debug and test

Oscilloscope and Logic Analysers with SPI protocol support.
This can look as the most obvious solution for any engineer having experience with hardware design.
Scopes and logic analysers will let you visualise and record information at signal level from the SPI port and
provide enough triggering capabilities to track virtually anything from your SPI traffic.

Many oscilloscope and logic analyser vendors provide specific protocol support (generally: SPI, I²C, CAN and
so on...) which are actually software add-ons for your scope or logic analyser. Once you have triggered
something from the SPI traffic, these software add-ons work on the sampled data to provide you with
protocol-specific information to help visualise and decode it.

On many scopes, you’ll be able to see the SPI signals superimposed with the decoding of the protocol
according to the settings you would have defined (see Figure 3). This enhances your readability of what is
going on at the protocol level. If you want to analyse data on your PC, you’ll be able to download what you

Byte Paradigm Products are available from:
The Debug Store, Berwyn House, Carrog, CORWEN, LL21 9AT, UK www.TheDebugStore.com

Byte Paradigm
White Paper

Revision 1.00 – 19-Jun-08 7/9

sampled as a file through the scope PC interface (GPIB, USB, Ethernet, ...) and most often, data will be
presented as ‘SPI decoded data’.

Figure 3: Example of protocol visualisation enhancement in oscilloscope

Processor with a SPI interface
This approach is in fact about using the system resources for self-testing and self-debugging. In this case,
the engineer uses embedded software specifically developed for testing and debugging. To get an insight of
what is going on in the embedded system, it is all about defining a program that will send the adequate
stimuli to the SPI interconnect and use the software itself to read back results stored in the embedded
system memory mapped registers or any other storage location. Because this technique only indirectly
accesses the SPI interconnect, it requires a great deal of interpretation. It might be your preferred choice if
you are skilled with software development and reluctant to dig into the hardware at signal level.

Actually, this approach may be considered as a ‘first-line test and debug strategy’ and must be used if
possible before implementing any other more invading technique. It is very useful to check if the system
‘does what it must do’... and is often the way you’ll detect that there is a problem with it, when the results
that you receive are not as you expected. According to the problem, you’ll need to investigate and perhaps
go at a much lower-level, for which you’ll need other complementary techniques than just using the
embedded system processor as single debug resource.

However, please bear in mind that using a processor for SPI stimulation won’t always allow you to send any
stimulus at clock cycle resolution: by their very nature, it is sometimes very tricky to have a processor
produce digital stimuli with a cycle-accurate timing. Moreover, due to software execution latencies, you

Byte Paradigm Products are available from:
The Debug Store, Berwyn House, Carrog, CORWEN, LL21 9AT, UK www.TheDebugStore.com

Byte Paradigm
White Paper

Revision 1.00 – 19-Jun-08 8/9

won’t always be able to stimulate the SPI interface at maximum speed, which may be desirable if you wish
to characterise your SPI interface.

Arbitrary digital pattern generator
Arbitrary digital pattern generators are sometimes referred to as digital I/O and have the ability to produce
arbitrary digital stimuli. As opposed to the previous ‘processor’ solution, this is a very low-level solution
acting at signal level. Basically, it consists in defining how each of your port signal lines will toggle.

Good digital pattern generator should provide efficient ways to define your pattern, like a programming
interface, that would allow you to emulate the SPI protocol.

Digital pattern generator efficiently complement any analysis tool, since they provide a very low-level way
to send stimuli to your embedded system and hence, lots of control about what is exactly sent onto the SPI
interconnect. Arbitrary pattern generator allows overcoming the limitations of the use of a processor (see
above) for stimuli generation.

PC-based SPI analyser, SPI exerciser and combined PC-based SPI analyser/exerciser
PC-based instruments are connected to a PC through one of its ports (USB, PCI, Ethernet...) and are
provided with a software running on the PC used to control the instrument and process the data generated
for the instrument or collected from it.

PC-based SPI analyser and PC-based SPI exerciser are categories of devices specialised for SPI analysis and
SPI stimulation. Schematically:

 A PC-based SPI analyser samples the embedded system SPI traffic and sends it to the PC
memory. Good PC-based analysers provide SPI protocol decoding support, and tools for data
visualisation on the PC, like a waveform viewer.

 A PC-based SPI exerciser lets act as a master on the SPI bus directly from the PC. It configures
the used SPI port (clock characteristics, number of slaves, single access length ...), offers
interfaces from the PC to define the data to be sent onto the SPI interconnect, and stimulate
the SPI interconnect according to the defined timing and other protocol characteristics.

 A combined tool can function both as a SPI exerciser and as a SPI analyser.

In comparison with more classical instruments, PC-based SPI tools present the following advantages:

 Interfaces: good PC-based SPI tools benefit from the flexibility of the PC and present multiple
interfaces like GUI and other programming interfaces (for example: C/C++ or scripting
interface). Having programming interfaces to control a SPI instrument is especially valuable
because you don’t quit your PC environment for low-level SPI test and debug. It offers a great
deal of flexibility for test automation and data processing and, with careful programming, to
develop a fully integrated test and debug solution that couples both software debug (software
execution with the embedded processor) and low-level hardware debug, through the
embedded system SPI port. Data generation is greatly simplified too, since the SPI exerciser can
be coupled to any software or simulation used as a stimulus source.

 Memory: when lots of data must be analysed or when a tool must generate long data runs (e.g.
stream samples to a DAC, a DSP or a CODEC), PC memory is largely available and inexpensive.

 Compactness: during embedded system development, more expensive and encumbering
equipment like logic analysers are not always available since they are most often shared by

Byte Paradigm Products are available from:
The Debug Store, Berwyn House, Carrog, CORWEN, LL21 9AT, UK www.TheDebugStore.com

Byte Paradigm
White Paper

Revision 1.00 – 19-Jun-08 9/9

several engineers. It is also very handy to be able to place a single small device next to your
laptop in the design room...

 Price: because they limit the ‘specialised’ hardware and their performance to the strict
necessary and benefit from your standard PC for memory and data processing power, you’ll
often get a PC instrument for a better price than its bench-top general purpose equivalent.

Productivity matters
The right solution for debugging and testing SPI must make the most of your time during test and debug – in
other words, help you validate your embedded system faster and help you find and correct bugs faster.

Embedded system development involves a wide variety of skills and very often a team of software and
hardware engineers with their own specialties and own habits. Being really productive during test and
debug does not necessarily mean choosing the most powerful oscilloscope because it has got the highest
sampling rate. In many cases, you’ll end up with costly equipment that engineers won’t use because it is
not available or because it does not really fit the test and debug case or because the engineers are not
familiar with it.

Embedded system development is difficult because it mixes so much potential software and hardware
issues. Even an embedded software developer can end up checking the system at signal level because it
impacts the software he is writing.

PC-based instruments offer a good match for embedded system designer who are not used to playing
with oscilloscope or logic analysers or any other bench-top instrument located in the lab.

 They usually provide a familiar programming interface, in C/C++, Visual Basic or any other
standard programming language.

 They offer a good continuity between the design environment and the test and debug
environment.

 They can better interact with software debug, since performed from the same, familiar PC
environment.

 They usually focus on specific tasks (“SPI debug”).
 They are priced so that each engineer can afford one on his/her desk, next to his/her laptop.

So, the embedded software engineer won’t need to go to the lab, export his files or wait for a
scope or a LA to be unoccupied to start debugging at low level.

 Combined SPI exerciser / analyser offer multiple functions and many options that fit both
embedded system stimulation AND embedded system analysis.

Testing and debugging times are increasingly important in the total design process, because of the growing
complexity of embedded systems. Efficient test and debug strategy heavily depends on the skills and
intelligence of the engineers who perform it. If your engineer is a software specialist, he’ll do wonders with
a PC. PC instruments will just allow him/her keep on using its favourite PC environment, even for low-level
tasks like SPI test and debug...

About the author

Frédéric Leens is Sales and Marketing Manager at Byte Paradigm.
He can be reached at: frederic.leens@byteparadigm.com

Byte Paradigm Products are available from:
The Debug Store, Berwyn House, Carrog, CORWEN, LL21 9AT, UK www.TheDebugStore.com

